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Statistical process adjustment (SPA) is utilised prevalently in novel manufacturing
scenarios. When quality characteristics rather than internal process variables are
inspected for the purpose of quality control, data with different resolutions may
be collected. This paper proposes a Bayesian framework for parameter estimation
when only categorical observations are available. The proposed method
incorporates categorical information recursively and updates parameter estimates
in real time. Simulation results show that the framework is effective in utilising
low-resolution information in parameter estimation, model building and process
control.

Keywords: categorical observations; statistical process adjustment; statistical
quality control

1. Introduction

Timely and accurate measurements are important in most engineering scenarios for
process control, quality evaluation and production planning. However, with the fast
development of new technologies, manufacturing processes that involve the synthesis of
nanocomposites and the fabrication of nanodevices are continuously introducing new
challenges to traditional quality control practices. Among others, low-resolution
information collected on a categorical scale is frequently seen in these processes; the
efficient use of such information for quality control has become an important topic.

There are two possible reasons for categorical observations to be generated in
engineering processes. First, timely and accurate numerical measurements are sometimes
too costly to be obtained; second, some quality characteristics cannot inherently be
measured on a numerical scale. Spanos and Chen (1997) presented an example in which
quality characteristics are measured on a discrete scale. Based on the roughness of etched
sidewalls, wafers are classified by trained operators into categories such as ‘very rough’,
‘rough’, ‘smooth’ and ‘very smooth’. Fasulo et al. (2004) studied an extrusion process of
the thermoplastic olefin (TPO) nanocomposites. Surfaces generated from each formula-
tion were first checked via visual ranking. Based on the surface quality, all panels were
ranked from 1 to 5 with 1 being the best and 5 the worst. After that, micrographs of the
surfaces were taken with the aid of special equipment for more accurate surface measures.
Brondino et al. (2006) presented examples that generate multivariate ordinal variables
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from both manufacturing processes and social sciences. Wang and Tsung (2007) studied
a deep reactive ion etching (DRIE) process, in which categorical observations were
collected and used for process adjustment.

In novel manufacturing environments, statistical process adjustment (SPA) is an
important way to improve quality and production efficiency and to reduce defects.
The purpose of SPA is to model, forecast and control a dynamic process using a set of
statistical techniques (Colosimo et al. 2005, Del Castillo 2006). Modelling is a vital step,
which usually includes model building and parameter estimation. Compared with the
automatic process control methods developed in traditional engineering fields, SPA has
two distinguishing features. First, SPA is not necessarily implemented fully automatically.
Rather, human operators or other components may be included in an SPA loop.
Therefore, SPA plays a supervisory role in guiding lower-level production systems.
Second, SPA can take quality characteristics as process responses to adjust the processes.
As quality characteristics are usually measured in the customer’s domain, such as fail or
pass, some new data types that are not seen when measuring internal process variables are
included. As the foregoing examples show, categorical observations collected on different
scales are available for quality control.

However, in order to maintain product quality, most algorithms for modelling and
controlling are built on the basis of numerical observations. For example, the most
widely used controllers in run-to-run (R2R) processes are the exponentially weighted
moving average (EWMA) controllers (Ingolfsson and Sachs 1993) and various
extensions of it, such as the double EWMA controller (Butler and Stefani 1994, Del
Castillo 1999), triple EWMA controller (Fan et al. 2002), variable EWMA controller
(Tseng et al. 2003) and the self-tuning controller (Del Castillo and Hurwitz 1997, Jen
et al. 2004). Even though these controllers are designed for compensating different
types of noise signals, they all share a common feature. All feedback controllers are
model-based and require numerical measurements from process outputs to be known.
This simply implies that in order to implement such controllers, two requirements must
be fulfilled: one, the measuring procedure must be finished quickly so that a new
control action can be calculated by the controller without inferring continuous
production; two, quality features of finished products must be able to be measured on
a continuous scale. When such assumptions are violated, as in the aforementioned
examples, we have to design new algorithms for model building, parameter estimation
and process control.

In this study, we take the DRIE process introduced by Wang and Tsung (2007) as an
example and propose a new approach for process parameter estimation using categorical
observations. Originally developed for micro-electro-mechanical systems (MEMS), DRIE
is a process that involves complex chemical-mechanical reactions. As a typical R2R process
widely used in semiconductor and nanomanufacturing, DRIE has been successfully utilised
in producing photonic crystals, magnetic nanostructures, MEMS resonators (STS 2006),
and high aspect ratio (450 : 1) silicon pillar arrays (Chan et al. 2006).

In the DRIE process, the maintenance and control of trench profiles, which is a key
quality characteristic, is a challenging problem. Based on its etched profile, each wafer can
be classified into different categories labelled as ‘negative’, ‘normal’ or ‘positive’,
indicating that the wafers are over-etched, normally etched or under-etched, respectively.
In addition, some irregular profiles may be produced in practice, as illustrated in Figure 1.
Wafers with irregular profiles can only be judged as over-etched or under-etched and
therefore be classified as negative or positive on a categorical scale.
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The shape of the etching profile is largely dominated by the etch/deposition time ratio
parameter of a process, which is a controllable factor during production. In order to achieve
an ideal profile, the etch-to-deposition time ratio has to be adjusted at the end of each run to
compensate for noise and aging effects. From these numerical input and categorical output,
this paper focuses only on the modelling issue of the process. Parameters involved in
illustrating this process are estimated using categorical observations.

Categorical variables, which by convention are called linguistic variables, are also found
in fuzzy control theory (Yu et al. 2003). A fuzzy logic controller converts numerical
observations to linguistic variables by referring to specific membership functions. The
linguistic variables are then fed into the rule base of the controller to suggest fuzzy control
actions. A crisp control action is finally generated by combining the fuzzy actions based on
certain decision-making logic. However, a fuzzy logic controller requires the determination
of an arbitrary membership function; the controller may assign each observation into more
than one linguistic set based on the membership functions, which differ from the mutually
exclusive categories considered in this paper. The philosophical and practical differences
between fuzzy control theory and statistical methods are discussed by Laviolette et al.
(1995). Wang and Tsung (2007) proposed a two-phase R2R categorical controller that
works on timely categorical measurements. However, they estimated process models in the
first phase by assuming that numerical values were available, which is a prerequisite for the
categorical controller to be built.

This paper proposes a Bayesian framework for parameter estimation based on
categorical observations. The rest of this paper is organised as follows. Section 2 presents
the model to be studied; Section 3 proposes the Bayesian framework for parameter
estimation using categorical observations; Section 4 studies the performance of the
proposed method via simulations. Finally, Section 5 concludes the paper with suggestions
for future research.

2. Process modelling and parameter definition

An R2R process is typically illustrated by a linear model (see Del Castillo and Hurwitz
1997, and Apley and Kim 2004 and the references therein), as follows:

yt ¼ �þ �ut�1 þ "t, ð1Þ

Figure 1. Illustrations of regular and irregular etching profiles from a DRIE process.
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where yt is the key quality characteristic, ut�1 is the process input at step t�1 �1 and "t is
a white noise series. Without loss of generality, we assume that "t � Nð0, �2Þ.

Del Castillo (2006) discussed the control issue of processes represented by

Equation (1). Essentially, if the process is on target and it suffers from white noise only,

there is no need for process adjustment. However, if set up bias exists and initial quality

characteristics do not meet the target, which happens frequently since the true process

parameters are never known, process adjustment will be necessary. In addition, if the

process is not stable and suffers from faults such as deterministic drift, process adjustment

should also be considered. A more detailed discussion is found in Del Castillo (2006).
Parameter estimation is the basis for process forecasting and control. Therefore, we

focus on parameter estimation issues based on categorical observations. In Equation (1),

the variable yt is used to denote the output at step t measured on a numerical scale.

However, yt is not available in the studied applications. Therefore, we call yt a latent

variable. We further define Yt¼ g( yt) as the categorised value of yt. Yt is a measurement

collected on a discrete scale at step t. The relationship between Yt and yt is adequately

modelled by the following mapping function:

Yt ¼ j if �j�1 5 yt 5 �j, j ¼ 1, . . . , J, ð2Þ

where J is the total number of categories to which yt will be assigned and � j, j¼ 0, 1, . . . , J,

are the cut-off parameters that separate the output space into J intervals. For certain

applications without the lowest and highest boundaries, the cut-off parameters, �0 and �J,
may take values of negative and positive infinity. Following the above mapping function,

the probability that an observation falls into either category j or a lower category is

given by:

PrðYt � jÞ ¼ Prð yt � �jÞ ¼ Prð"t � �j � �� �ut�1Þ:

Since "t � Nð0, �2Þ, PrðYt � jÞ ¼ �ðð�j � �� �ut�1Þ=�Þ, where �(�) is the cumulative

density function of a standard normal distribution. Applying the probit link function to

the above equation and making a simple transformation yields:

���1ðPrðYt � jÞÞ ¼ �j � �� �ut�1, j ¼ 1, . . . , J,

which shows a linear relationship between the transformed probability and the process

parameters.
Let �¼ {�,�} be a set that contains unknown process parameters. In the rest of this

paper, we present a Bayesian framework to estimate �. The vector c¼ [�0, �1, . . . , �J]
T,

which is in fact the hidden rules used by operators who inspect and classify products, is

assumed to be known. The estimation of c using categorical observations deserves separate
analysis. (Interested readers are referred to Wang and Tsung (2007) for situations when

numerical observations are available during the experimental stage.)

3. A Bayesian framework for parameter estimation using categorical observations

In the following, we will study a recursive Bayesian framework for estimating

and updating �. Different from the usual estimation procedure that assumes that

all observations are obtained at once, the recursive method assumes that observations

are collected one by one, which fits the real situation of engineering processes.
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Whenever a new sample is collected and measured on a categorical scale, this measurement

will be utilised to update previous estimates of the parameters. As the process evolves, the

parameters are expected to approach their respective true values.
To implement the above framework, we first derive the joint posterior distributions

of unknown parameters. Prior distributions that appear in the joint posterior

distributions are then elicited. After that, the full conditional distributions of all

parameters are derived, which are used for recursive parameter estimation using Gibbs

sampling.

3.1 Posterior distributions

As all numerical variables, y1, . . . , yt, are not observable, we treat them as latent variables

that need to be estimated. According to the Bayes’ theorem, given all categorical

observations up to step t, the joint posterior distribution of unknown process parameters,

�, and latent variables, y1, . . . , yt, is given by:

f yt, . . . , y1,�jYt, . . . ,Y1Þ / f ð�Þ f ð yt, . . . , y1,Yt, . . . ,Y1j�ð Þ: ð3Þ

The second component in Equation (3) represents the likelihood of all categorical and

continuous data up to time t, which can be further factorised as:

f ð yt, . . . , y1,Yt, . . . ,Y1j�Þ ¼ f ð y1,Y1j�Þ

� f ð y2,Y2jy1,Y1,�Þ � � � f ð yt,Ytjyt�1,Yt�1, . . . , y1,Y1,�Þ:

For each k2 [1, t], the joint distribution can be further decomposed as:

f ð yk,Ykjyk�1,Yk�1, . . . , y1,Y1,�Þ ¼ f ð ykjyk�1,Yk�1, . . . , y1,Y1,�Þ

� f ðYkjyk, yk�1,Yk�1, . . . , y1,Y1,�Þ:

As the distribution of yk is solely determined by yk�1,yk�2, . . . , y1 and �, it follows that:

f ð ykjyk�1,Yk�1, . . . , y1,Y1,�Þ ¼ f ð ykjyk�1, . . . , y1,�Þ ¼ Nð ykj�k, �
2Þ, ð4Þ

where

�k ¼ �þ �uk�1:

Note that uk�1 is a constant and �k is a function of � and �.
Once the distributions of the latent variables are determined, the density function of Yk

takes one over the interval in which the latent variable falls and takes zero otherwise.

That is,

f ðYkjyk, yk�1,Yk�1, . . . , y1,Y1,�Þ ¼ f ðYkjykÞ / I�Yk�1�yk 5 �Yk
, ð5Þ

where

I�Yk�1�yk 5 �Yk
¼

1 if�Yk�1 � yk 5 �Yk

0, otherwise:

�
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Putting the above derivations together, we obtain the posterior distribution of

unknown parameters given all categorical observations collected up to step t:

f ð yt, . . . , y1,�jYt, . . . ,Y1Þ / f ð�Þ
Yt
k¼1

Nð ytj�k, �
2ÞI�Yk�1�yk 5 �Yk

: ð6Þ

3.2 Prior elicitation

In order to obtain appropriate prior distributions for the unknown parameters �,

we apply a reasonable assumption that both � and � follow normal distributions and they

are independent, which implies that:

f ð�Þ ¼ f ð�Þf ð�Þ

f ð�Þ ¼ Nð�j�0, �
2
�,0Þ

f ð�Þ ¼ Nð�j�0, �
2
�,0Þ:

8>><
>>: ð7Þ

By substituting Equation (7) for f (�) in Equation (6), the joint posterior distribution

becomes:

f ð yt, . . . , y1,�jYt, . . . ,Y1Þ / Nð�j�0, �
2
�,0ÞNð�j�0, �

2
�,0Þ

�
Yt
k¼1

Nð ykj�k, �
2ÞI�Yk�1�yk 5 �Yk

:
ð8Þ

The joint distribution is truncated so that the intervals to categorise continuous variables

are properly defined.

3.3 Fully-conditional distributions

The fully-conditional distribution of each parameter is defined as the distribution when all

other parameters are known. In Gibbs sampling, based on samples drawn from the fully-

conditional distributions, the marginal distribution of each parameter can be obtained.

In this section, we derive the fully-conditional distribution for unknown parameters and

use Gibbs sampling to derive the marginal distributions of all parameters.
It should be noted that one fundamental difference between Bayesian process control

and Bayesian data analysis is the availability of information. In ordinary data analysis,

information is given all at once with a limited number of observations; in process control,

a process generates data continuously. As a result, the dimension of the available data is

not a constant but a variable that continuously increases. Therefore, in this study, we

develop a recursive method to make use of information in the model estimation. This

recursive method fits the philosophy of Bayesian analysis. At step t, parameter estimates

obtained based on previous t� 1 observations are treated as the prior for step t. After that,

new information collected from the tth step is incorporated into the model by updating the

priors and generating a new prior for step tþ 1.
We start by investigating the fully-conditional distribution of yt after Yt is observed.

As the process is subject to white noise, the distribution of yt depends on knowledge
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collected up to time t only. Therefore,

f ð ytj�,�, yt�1, . . . , y1,Yt, . . . ,Y1Þ / Nð ytj�t, �
2ÞI�Yt�1�yt 5 �Yt

, ð9Þ

which tends to be a normal distribution truncated by the boundaries of the category that

the observation falls into, as shown in Figure 2. The mean of the truncated distribution,

denoted by mt, is different from the non-truncated mean, �t.
It is not difficult to show that mt satisfies:

mt ¼ �t þ
� ’ðb1Þ � ’ðb2Þð Þ

�ðb2Þ ��ðb1Þ
,

where b1 ¼ ð�Yt�1 � �tÞ=�, b2 ¼ ð�Yt
� �tÞ=�, and ’ is the probability density function of

the standard normal distribution and � is the cumulative density function of the standard

normal distribution.
Based on the joint posterior distribution in Equation (8) and Bayes’ theorem, the fully-

conditional distribution of � can be written as:

f ð�j�, yt, . . . , y1,Yt, . . . ,Y1Þ / f ð�,�, yt, . . . , y1jYt, . . . ,Y1Þ: ð10Þ

We treat Equation (10) as a function of � and move all parameters that are independent of

� to a constant term to normalise the density function. The density function of � then

reduces to:

f ð�ðtÞj�Þ / N �j�0, �
2
�,0

� �Yt�1
k¼1

Nð ykj�k, �
2Þ �Nð ytj�t, �

2Þ, ð11Þ

where the superscript (t) indicates that the current estimate is obtained based on historical

observations up to step t. For simplicity, we use f (�(t)j�) to represent the fully-conditional

density of �(t). Equation (11) establishes that the estimate of � at step t can be expressed

recursively based on the estimate obtained at step (t� 1), which implies:

f ð�ðtÞj�Þ / f ð�ðt�1Þj�,�, yt�1, . . . , y1,Yt�1, . . . ,Y1Þ �Nð ytj�t, �
2Þ, ð12Þ

mtμt

γ
Yt−1

γ
Yt

Figure 2. Truncated normal distributions.
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The last term in Equation (12), N( ytj�t, �
2), is the likelihood function of observation yt,

which can be transformed to a function of �:

Nð ytj�t, �
2Þ / exp � yt��tð Þ

2

2�2

� �
/ exp � ð yt�ð�þ�ut�1ÞÞ

2

2�2

� �
/ exp � ð��ð yt��ut�1ÞÞ

2

2�2

� �
:

ð13Þ

Let ��,y¼ yt� �ut�1 and �
2
�,y ¼ �

2. It is not difficult to see that Equation (13) is in fact
a normal density function of � with mean ��,y and variance �2�,y.

It becomes clear that Equation (11) or, equivalently, Equation (12) is proportional to
the product of two normal density functions, f (�(t�1)j�) and N( ytj�t, �

2). Finally, by
denoting the mean and variance of distribution f (�(t)j�) as ��,t and �2�,t, the fully-
conditional distribution of � obtained at step t can be proved to be a normal distribution
with mean:

��,t ¼
��,t�1
�2�,t�1

þ
��,y
�2�,y

 !�
1

�2�,t�1
þ

1

�2�,y

 !

and variance:

�2�,t ¼ 1

�
1

�2�,t�1
þ

1

�2�,y

 !
:

The above analysis shows that when a new observation is sampled, the distribution of �
is obtained as the previous estimate calibrated by information conveyed by the latest
observation. Therefore, it is feasible for us to implement a recursive algorithm to simplify
the calculation while making the estimate of the parameters more accurate.

In a similar fashion, the fully-conditional distribution of � can be obtained as:

f ð�ðtÞj�Þ / f ð�ðt�1Þj�ÞNð ytj�t, �
2Þ: ð14Þ

Let ��,y¼ ( yt� (1��)�)/ut�1 and �
2
�,y ¼ �

2=jut�1j. We can show that the fully-conditional
distribution of � is a normal distribution with mean:

��,t ¼
��,t�1
�2�,t�1

þ
��,y

�2�,y

 !�
1

�2�,t�1
þ

1

�2�,y

 !

and variance

�2�,t ¼ 1

�
1

�2�,t�1
þ

1

�2�,y

 !
,

where ��,t�1 and �
2
�,t�1 are the estimated mean and variance of � obtained in step t� 1.

3.4 Parameter estimation and process control via Gibbs sampling

Gibbs sampling is a way of estimating marginal distributions of random variables (see
Geman and Geman 1984, Colosimo and Del Castillo 2007 for more details). In the
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following, a Gibbs sampling procedure for estimating the unknown parameters in

Equation (1) is proposed.
When a new categorical observation becomes available, the Gibbs sampling procedure

starts sampling yt, � and � repeatedly until a sufficiently large number is reached.

By calculating the sample mean and variance with the initial samples removed, the

marginal distributions of � and � can be obtained. The recursive estimation and sampling

process is outlined as follows:

Step 1: Sample one yt from Equation (9).

Step 2: Using the estimate obtained from the previous step as the prior and yt from

Step 1, update the conditional distribution of � in Equation (12).

Step 3: Sample one � from the updated conditional distribution.

Step 4: Using the estimate obtained from the previous step as the prior, yt from Step 1

and � from Step 3, update the conditional distribution of � in Equation (14).

Step 5: Sample one � from the new conditional distribution.

Step 6: Using the newly sampled � and �, go back to Step 1. Update the conditional

distribution of yt.

Step 7: Repeat Steps 1–6 until a sufficiently large number is reached.

Step 8: Calculate the sample mean and standard deviation of � and �, respectively, which
will serve as the prior for the next step; if a feedback controller is in place, use the

updated parameters to generate a new recipe; then go ahead to produce a new

run, perform an inspection, and repeat Steps 1–8.

The above procedure routinely uses new categorical observations to update previous

estimates of the parameters. Therefore, the estimated values are expected to approach their

true levels gradually.
In order to control the process against initial bias, we define the objective to

minimise the expected one-step-ahead prediction errors given all historical information.

Denote the target of process (1) as T0. At step t, given Yt, . . . ,Y1, the objective function is

given by:

E ð ytþ1 � T0Þ
2
jYt, . . . ,Y1

� �
:

In this study, as Equation (1) shows, we assume that the process has a white noise

disturbance series. Since ytþ1¼ �þ �utþ "t and E("tþ1)¼ 0, it is not difficult to show that:

E ð ytþ1 � T0Þ
2
jYt, . . . ,Y1

� �
¼ �2u2t þ ð�� T0Þ

2
þ �2 þ 2ð�� T0Þ�ut:

Taking a partial derivation of the above equation with respect to ut and equating it to zero

yields the optimal control action:

ut ¼
T0 � �

�
: ð15Þ

As the control algorithm is derived based on Bayesian analysis using categorical

information, we name it a Bayesian categorical controller (BCC). It is worth noting that

the above control action is analogous to the EWMA controller. However, the EWMA
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controller updates � using continuous measurements collected from a process, while the

BCC uses categorical information.
It should be noted that if all the process parameters are already known or have been

estimated rather accurately, it might not be necessary to continue to update the

parameters. A good practice is to use the above procedure to calibrate the initial bias only

and turn to more advanced process controllers when the estimated parameters show

stability.

4. Simulation study

In this section, we investigate the performance of the proposed estimation procedure using

a numerical example. In each simulation, we assume that the process follows Equation (1)

with �¼ 80.0, �¼ 1.0 and a standard deviation �¼ 0.3. The target value of the process is,

T¼ 90.0. Two cut-off parameters, 89 and 91, are set up to classify the process outputs into

three categories. The Gibbs sampling set is repeated 110,000 times whenever a new

observation is collected. The last 100,000 samples are used to calculate the marginal

distributions of the unknown parameters.
In Bayesian analysis, there are many ways to obtain priors for unknown parameters.

As we want to investigate the issues caused by initial bias, we assume that the prior mean

of � and � are 75.0 and 0.8, respectively, and their variance is 1.0. The difference in these

values indicates the existence of initial bias. The BCC controller is set up for initial process

adjustment.
In the simulation procedure illustrated above, the purpose of Step 1 is to sample

a numerical y when a categorical Y is available. The samples are taken from a truncated

normal distribution. This is a critical step that links categorical variables with numerical

variables. Figure 3 shows two cases during the Gibbs sampling when the observation falls

between a deviant category and the target category. By taking sufficiently large samples,

the truncated distribution is reconstructed well.
Figure 4 shows the trajectories of the mean and variance of estimated � and �. It is

clearly seen from Figures 4(a) and 4(b) that the initial values have deviated from their

respective true levels. When categorical observations are used in the parameter

estimation, the estimated parameters approach their true value gradually. In the early

stage, oscillation may exist since the information contained in the categorical variables

may not be accurate. After around 20 steps, however, the estimates are already rather

close to their true values. Figures 4(c) and 4(d) suggest that the variances of the

estimated parameters decrease as more observations are accumulated. This trend also

shows that the recursive algorithm is effective in making use of categorical observations

for parameter estimation.
The sequence of controlled output, yt, is shown in Figure 5. As is seen, the initial biased

estimates of unknown parameters lead to extreme output values. However, as the

estimated parameters approach their true values quickly, the process is maintained on

target after a short period of time.
As discussed in Section 2, a process that is influenced by a white noise series should not

be adjusted by any feedback controller. However, if initial bias exists, the process will stay

far from its target forever. In the simulation studies, we equip the process with a simple

controller to calibrate its initial bias. After the transient stage, unless sudden parameter

changes may happen, the controller could be removed. Alternatively, the controller could
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be set to work only if the output deviates far from the target value, which serves
as an indication of a sudden process shift. This treatment resembles the bounded controller
(Del Castillo and Hurwitz 1997). We do not discuss this issue in depth here but leave it as
a topic for future research.

5. Conclusions and future research

In novel manufacturing scenarios, it is not uncommon that information with different
resolutions is presented. This paper investigated the estimation of process parameters
when only categorical observations are available. A Bayesian framework was proposed to
estimate the unknown parameters efficiently. This framework takes categorical observa-
tions sequentially when they become available and updates the estimates recursively, which
is a feasible and efficient way in engineering control settings. Simulation studies showed
that even when based on categorical observations, the proposed method can estimate the
unknown parameters rather accurately and quickly.

Information with different resolutions is frequently encountered in modern manu-
facturing scenarios. Conventional quality control theories have to be updated to fit in the
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Figure 3. Samples drawn from truncated normal distributions during Gibbs sampling.
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new settings. This study focused on the estimation issue. When a more complicated
disturbance series that follows an IMA(1, 1) or a general ARIMA time series model is
presented, more parameters will be involved and the recursive Bayesian framework should
be extended. Furthermore, deployment of more advanced adjustment algorithms,
including a bounded controller based on categorical or mixed-resolution observations, is
also an interesting topic for future research.

In this research, we assumed all cut-off parameters were fixed. While in
practice, especially when human factors are involved, misclassification may exist.
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Measurement system analysis for attribute data and its integration with process control is

another interesting topic for future research.
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